3° medio

Aprendo en línea

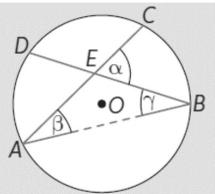
Orientaciones para el trabajo

con el texto escolar

Clase 42

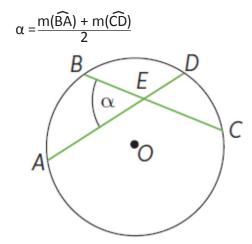
Matemática

En esta clase aplicaremos nuestros conocimientos para resolver **problemas** que involucren ángulos interiores y exteriores en la circunferencia.

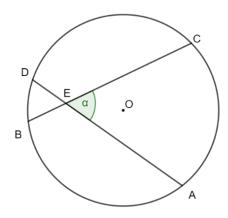

OA4

Para resolver esta guía necesitarás tu libro y tu cuaderno de matemática. Realiza todas las actividades que te proponemos en tu cuaderno, agregando como título el número de la clase que estás desarrollando.

Desarrollo



Un **ángulo interior** α está formado por la intersección de dos cuerdas en un punto al interior de la circunferencia. En la siguiente imagen, las cuerdas son $\overline{\text{CA}}$ y $\overline{\text{DB}}$.


Dada una circunferencia de centro O, con \overline{AD} y \overline{BC} cuerdas que se intersecan en el punto E, se cumple lo siguiente:

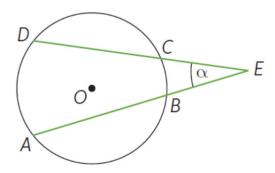
Teorema: La medida de un ángulo interior es igual a la semisuma de los arcos que subtienden sus lados y la prolongación de ellos.

Ejemplo:

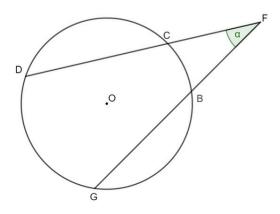
Si m (\widehat{DB}) = 25° y m (\widehat{AC}) = 65°

$$\alpha = \frac{m(\widehat{AC}) + m(\widehat{DB})}{2} = \frac{65^{\circ} + 25^{\circ}}{2} = \frac{90^{\circ}}{2} = 45^{\circ}$$

Actividad 1


Encuentra el valor de x en el **ejercicio b** del **ítem 3** de la página 64, de tu Texto del Estudiante. Recuerda comprobar tu respuesta en el solucionario de tu **Texto del Estudiante**, página 229.

Dada una circunferencia de centro O, con \overline{AB} y \overline{DC} secantes que se intersecan en el punto E, se cumple lo siguiente:


Teorema: La medida de un ángulo exterior es igual a la mitad de la diferencia de los arcos que subtienden los lados del ángulo.

$$\alpha = \frac{m(\widehat{D}A) - m(\widehat{BC})}{2}$$

Ejemplo:

Calcula el valor de α si se sabe que m(\widehat{BC}) = 30° y m(\widehat{DG}) = 86°

$$\alpha = \frac{86 - 30}{2} = \frac{56}{2} = 28^{\circ}$$

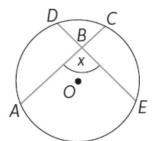
Actividad 2

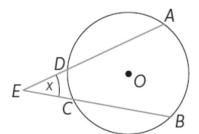
Guiándote por el ejemplo dado resuelve los **ejercicios a, c, d, e y f** del **ítem 3** de la página 64 de tu **Texto del Estudiante.**

Puedes comprobar las respuestas anteriores en el **solucionario de tu Texto del Estudiante**, página 229.

Actividad 3

Resuelve los ejercicios a y b del ítem 1, en la página 28, del cuaderno de actividades.

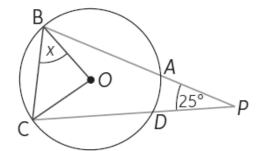

Cierre


Evaluación de la clase

Responde las siguientes preguntas, encerrando en un círculo la letra de la alternativa correcta.

Si m(\widehat{AE}) = 72° y m(\widehat{CD}) = 37°, ¿Cuál es el valor de x?

- a) 17,5°
- **b)** 35°
- **c)** 54,5°
- **d)** 74°
- e) 144°
- Si m (\widehat{BA}) = 89° y m(\widehat{DC}) = 63°, ¿Cuál es el valor del doble de x?



- **a)** 13°
- **b)** 26°
- **c)** 52°
- **d)** 76°
- **e)** 152°

3

Si m(DA) = 35°, ¿cuál es la medida de un quinto de x

- **a)** 9,5°
- **b)** 17°
- **c)** 19°
- **d)** 47,5°
- **e)** 95°

Revisa tus respuestas en el solucionario y luego revisa tu nivel de aprendizaje, ubicando la cantidad de respuestas correctas, en la siguiente tabla:

3 respuestas correctas:	Logrado.
2 respuestas correctas:	Medianamente logrado.
1 respuesta correcta:	Por lograr.

Completa el siguiente cuadro, en tu cuaderno:

Mi aprendizaje de la clase número	fue:	
1 2		

30 medio

Textoescolar

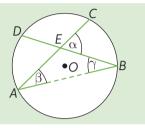
Matemática

Unidad

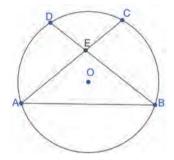
2

A continuación, puedes utilizar las páginas del texto escolar correspondientes a la clase.

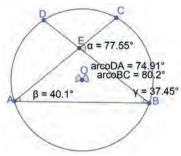
Ángulos interiores y exteriores en la circunferencia


Objetivo: Resolver problemas que involucren ángulos del centro e inscritos en una circunferencia.

¿Qué es una secante?, ¿y una tangente?

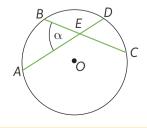

¿Qué propiedades se cumplen en los ángulos interiores y exteriores de un triángulo? Explica.

1. Analiza la información y realiza las actividades.


Un ángulo interior α está formado por la intersección de dos cuerdas en un punto al interior de la circunferencia. En la imagen que se muestra al costado, las cuerdas son \overline{CA} y \overline{DB} .

- a. Considerando que $\alpha = \beta + \gamma$, por ser ángulo exterior al triángulo *AEB*, expresa la medida de α en función de los arcos \widehat{DA} y \widehat{BC} .
- b. Utiliza GeoGebra y construye la circunferencia anterior. Sigue los pasos:
- Paso 1: Construye una circunferencia con la herramienta Circunferencia (centro, punto). Rotula el centro de la circunferencia como "O". Con la herramienta Segmento, traza las cuerdas \overline{AB} , \overline{AC} y \overline{BD} . Finalmente, marca el punto donde se intersecan las cuerdas \overline{AC} y \overline{BD} .

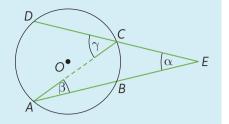
- Paso 2: Con la herramienta Ángulo, mide $\triangleleft BEC$, $\triangleleft BAE$ y $\triangleleft DBA$. Con la herramienta Sector circular, forma los sectores circulares AOD y BOC.
- Paso 3: Con la herramienta Ángulo, mide $\triangleleft DOA$ y $\triangleleft BOC$, que serán las medidas angulares de los arcos \widehat{DA} y \widehat{BC} respectivamente. Puedes rotularlos como "arcoDA" y "arcoBC". Finalmente, oculta los sectores circulares.



c. Mueve tu construcción de manera tal que varíen los ángulos β y γ . Para cada variación de β y γ , anota el valor de α . Verifica que se cumple la expresión obtenida en a.

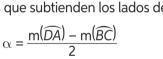
Dada una circunferencia de centro O, con \overline{AD} y \overline{BC} secantes que se intersecan en el punto E, se cumple lo siguiente:

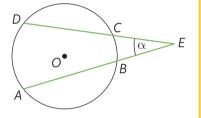
Teorema: La medida de un ángulo interior es igual a la semisuma de los arcos que subtienden sus lados y la prolongación de ellos.


$$\alpha = \frac{\mathsf{m}(\widehat{\mathit{BA}}) + \mathsf{m}(\widehat{\mathit{CD}})}{2}$$

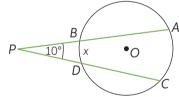
Lección 5

2. En parejas, analicen la información. Luego, respondan.

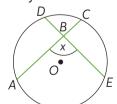

Un ángulo exterior α es aquel cuyo vértice está fuera de la circunferencia. Puede estar formado por la intersección de dos secantes, una secante y una tangente, o dos tangentes. En la imagen, las secantes son \overline{AB} y \overline{DC} .

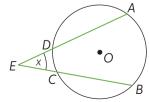


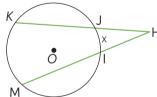
- a. Expresen β en función de la medida angular de $\widehat{\mathit{BC}}$ y γ en función de la medida angular de $\widehat{\mathit{DA}}$.
- **b.** Considerando que $\gamma = \alpha + \beta$, por ser ángulo exterior al triángulo *AEC*, ¿qué expresión representa el valor de α en función de los arcos \widehat{DA} y \widehat{BC} ?
- c. Si m (\widehat{DA}) = 100° y m (\widehat{BC}) = 30°, ¿cuánto mide el ángulo α ?
- d. Si el ángulo α mide 70° y m (\widehat{BC}) = 50°, ¿cuál es la medida angular de \widehat{DA} ?

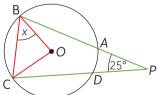

Dada una circunferencia de centro O, con \overline{AB} y \overline{DC} secantes que se intersecan en el punto E, se cumple lo siguiente:

Teorema: La medida de un ángulo exterior es igual a la mitad de la diferencia de los arcos que subtienden los lados del ángulo.




- ¿Cuál es la mayor medida que puede tener un ángulo exterior? Fundamenta.
- 3. Calcula el valor de x en cada caso.
 - a. $m(\widehat{CA}) = 80^{\circ}$.


b. $m(\widehat{AE}) = 80^{\circ} \text{ y } m(\widehat{CD}) = 40^{\circ}.$


c. $m(\widehat{BA}) = 100^{\circ} \text{ y } m(\widehat{DC}) = 60^{\circ}.$


d. La medida de $\triangleleft KHM$ es 30° y la medida angular de \widehat{KM} es 140°.

e. $m(\widehat{DA}) = 30^{\circ}$.

f. $m(\widehat{DB}) = 10^{\circ}$.

