

OA 2 - 1° Medio

Actividades de apoyo 1º medio **Guía para estudiantes**

Tema:

Potencias de base y exponente natural

Ficha 1

Nombre:			
Curso:	Letra:	Fecha:	
Establecimiento:			

GUÍA DEL ESTUDIANTE Nº 3 Potencias de base y exponente natural

Introducción:

La siguiente guía tiene como objetivo reforzar los conocimientos previos que necesitas comprender para abordar, de manera eficiente, los conocimientos matemáticos correspondientes al siguiente objetivo de aprendizaje (OA):

OA 2: Mostrar que comprenden las potencias de base racional y exponente entero: Transfiriendo propiedades de la multiplicación y división de potencias a los ámbitos numéricos correspondientes. Relacionándolas con el crecimiento y decrecimiento de cantidades. Resolviendo problemas de la vida diaria y otras asignaturas.

Analizando los respectivos nudos de aprendizaje, se ha elaborado esta ficha de estudio, la que aborda el siguiente conocimiento:

Tema	Ficha	Nudo de aprendizaje
3. Potencias de base y exponente natural. (Guía N°3)	1. Potencias de base y exponente natural.	No comprenden las propiedades de las potencias.

- En esta ficha encontrarás las siguientes secciones:
- Recordemos: Se activan los conocimientos previos.
- **Práctica:** Se proponen actividades que te permitirán aplicar los conocimientos previos.
- **Desafío:** Se compone de una o más actividades por medio de problemas o situaciones en contextos concretos o simplemente matemáticos, que te invitarán a la aplicación y reflexión de los aprendizajes adquiridos.

FICHA 1: Potencias de base y exponente natural

OBJETIVO: Resolver adiciones de números enteros.

RECORDAMOS

Recordemos que una potencia se representa por la expresión aⁿ, se lee "a elevado a n"; en la que a corresponde a la base y n al exponente (a y n E N), y se define como el producto de la base (a) tantas veces cómo señale el exponente (n), es decir:

a)	b)	
$3^{4} = 3^{4} = 3 \cdot 3 \cdot 3 \cdot 3 = 81$ Valor de la potencia	$2^{3} = 2^{3} = 2 \cdot 2 \cdot 2 = 8$ Valor de la potencia	
3 ⁴ →Se lee: tres elevado a cuatro "Tres a la cuarta"	2 ³ → Se lee: dos elevado a tres "dos al cubo"	
3 ⁴ = 3 • 3 • 3 • 3 ↓ Se desarrolla: el 3 (la base) se multiplica por sí mismo 4 veces (según lo señale el exponente)	2³ = 2 • 2 • 2 ↓ Se desarrolla: el 2 (la base) se multiplica por sí mismo 3 veces (según lo señale el exponente)	
$3^{4} = 3 \cdot 3 \cdot 3 \cdot 3$ \downarrow Se calcula: $3 \cdot 3 \cdot 3 \cdot 3$ $9 \cdot 9$ 81	$2^{3} = 2 \cdot 2 \cdot 2$ \downarrow Se calcula: $2 \cdot 2 \cdot 2$ $4 \cdot 2$ 8	

Caso 1: Multiplicación de potencias

A continuación, trabajaremos con las propiedades de las potencias de base y exponente natural, relacionadas con la multiplicación:

- Multiplicación de potencias de igual base.
- Multiplicación de potencias de igual exponente.

MULTIPLICACIÓN DE POTENCIAS DE IGUAL BASE

Cuando multipliquemos potencias que tengan igual base, a^m y a^p, su producto es equivalente a una potencia con la misma base, y su exponente es igual a la suma de los exponentes de las potencias originales. Es decir:

$$a_{m} \cdot a_{b} = a_{m+b}$$

Observemos los siguientes ejemplos para recordar esta propiedad.

Ejemplos

a) ¿Cómo expresar en una sola potencia 23 · 24?

$$2^3 \cdot 2^4 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 2^{1+1+1+1+1+1+1} = 2^7$$

La potencia 2^3
Se representa como se se suman sus exponentes

Se representa como multiplicación iterada

 $2^3 = 2 \cdot 2 \cdot 2$
 $2^4 = 2 \cdot 2 \cdot 2 \cdot 2$

Se mantiene la base 2, y se suman sus exponentes

 $2^3 \cdot 2^4 = 2^{3+4} = 2^7$

b) ¿Cómo expresar en una sola potencia 5⁴ · 5²?

c) Usando una sola potencia, ¿cómo expresar $6^2 \cdot 6^3 \cdot 6^2$?

MULTIPLICACIÓN DE POTENCIAS DE IGUAL EXPONENTE

Cuando multipliquemos potencias que tengan igual exponente, a^m y b^m, su producto es equivalente a una potencia de base igual al producto de las bases de las potencias originales, y se mantiene el exponente. Es decir:

$$a^m \cdot b^m = (a \cdot b)^m$$

Observemos los siguientes ejemplos para recordar esta propiedad.

Ejemplos

a) ¿Cómo expresar en una sola potencia 2³ · 5³?

$$2^{3} \cdot 5^{3} = 2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5 = (2 \cdot 5) \cdot (2 \cdot 5) \cdot (2 \cdot 5) = (2 \cdot 5)^{1+1+1} = (2 \cdot 5)^{3}$$

La potencia 2³ Se representa como multiplicación

 $2^3 = 2 \cdot 2 \cdot 2$

La potencia 5³ Se representa como multiplicación iterada $5^3 = 5 \cdot 5 \cdot 5$

Agrupamos usando paréntesis los factores según se suman sus exponentes. las bases de las potencias, en este caso, 2 y 5.

veces que todos queden mantiene el exponente que agrupados.

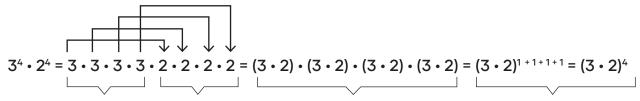
De la expresión (2 · 5). podemos decir que su base es $(2 \cdot 5)$, y su exponente 1. Es decir: $(2 \cdot 5) = (2 \cdot 5)^1$

los Se mantiene la base (2 • 5), y

Otra manera de expresarlo es que se multiplican las Agrupamos (2 · 5), tantas bases de las potencias, y se es el mismo.

$$\longrightarrow$$
 2³• 5³ = (2 • 5)³ = 10³

b) ¿Cómo expresar en una sola potencia 34 · 24?



La potencia 3⁴ Se La potencia 2⁴ Se representa como representa como multiplicación $3^4 = 3 \cdot 3 \cdot 3 \cdot 3$

multiplicación iterada $2^4 = 2 \cdot 2 \cdot 2 \cdot 2$

Agrupamos usando los paréntesis los factores según las bases de las potencias, en este caso, 3 y 2.

Agrupamos (3 · 2), tantas veces que todos queden agrupados.

De la expresión (3 \cdot 2), podemos decir que su base es (3 \cdot 2), y su exponente 1. Es decir: $(3 \cdot 2) = (3 \cdot 2)^1$ Se mantiene la base (3 · 2), y se suman sus exponentes.

$$\longrightarrow$$
 3⁴• 2⁴ = (3 • 2)⁴ = 6⁴

c) Usando una sola potencia, ¿cómo expresar 72 · 82 · 52?

$$7^2 \cdot 8^2 \cdot 5^2 = 7 \cdot 7 \cdot 8 \cdot 8 \cdot 5 \cdot 5 = (7 \cdot 8 \cdot 5) \cdot (7 \cdot 8 \cdot 5) = (7 \cdot 8 \cdot 5)^{1+1} = (7 \cdot 8 \cdot 5)^2$$

La potencia
 7^2 , se
 7^2 , se
representa
como
como
multiplicación
iterada
 $7^2 = 7 \cdot 7$

Be a potencia
 8^2 , se
representa
como
multiplicación
iterada
 $7^2 = 7 \cdot 7$

Be a potencia
Agrupamos
usando
los
paréntesis los factores según
las bases de las potencias, en este caso, $7, 8 y 5$.

Agrupamos $(7 \cdot 8 \cdot 5)$, tantas veces que todos queden agrupados.

De la expresión $(7 \cdot 8 \cdot 5)$, podemos decir que su base es $(7 \cdot 8 \cdot 5)$, y su exponente 1. Es decir:
 $(7 \cdot 8 \cdot 5) = (7 \cdot 8 \cdot 5)^1$
 $7^2 \cdot 8^2 \cdot 5^2 = (7 \cdot 8 \cdot 5)^2 = 280^2$

CASO 2: DIVISIÓN DE POTENCIAS

A continuación, trabajaremos con las propiedades de las potencias de base y exponente natural, relacionadas con la división:

- División de potencias de igual base.
- División de potencias de igual exponente.

DIVISIÓN DE POTENCIAS DE IGUAL BASE

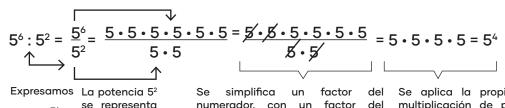
Cuando dividimos potencias que tengan igual base, a^m y a^p , su cociente es equivalente a una potencia con la misma base, y su exponente es igual a la diferencia entre los exponentes del dividendo y del divisor. Es decir:

$$a^m : a^p = a^{m-p}$$
 con $m > p$

Observemos los siguientes ejemplos para recordar esta propiedad.

EJEMPLOS

a) ¿Cómo expresar en una sola potencia 56: 52?



multiplicación

 $5^2 = 5 \cdot 5$

denominador. Sucesivamente, hasta

que en el denominador solo resulte 1.

En este caso:

- Se simplifica un 5 del numerador con un 5 del denominador.

- se simplifica nuevamente, un 5 del numerador con un 5 del denominador.

- No se continúa simplificando, ya aue el denominador es 1.

del Se aplica la propiedad de la multiplicación de potencias de igual base, es decir, se mantiene el valor de la base, y se suman sus exponentes.

b) Dada 124: 12, ¿cómo la expresarías en una sola potencia?

La potencia 12⁴ se representa como multiplicación iterada $12^4 = 12 \cdot 12 \cdot 12 \cdot 12$

$$12^{4}: 12 = \underbrace{12^{4}}_{12^{1}} = \underbrace{12 \cdot 12 \cdot 12 \cdot 12}_{12} = \underbrace{12^{4} \cdot 12 \cdot 12 \cdot 12}_{12} = 12 \cdot 12 \cdot 12 = 12^{3}$$

Expresamos La potencia 12¹ se representa como multiplicación iterada, que, en este caso como el exponente es 1, se expresa por: $12^1 = 12$

Se simplifica un factor del numerador, con un factor del denominador. Sucesivamente, hasta que en el denominador solo resulte 1.

En este caso:

- -Sesimplifica un 12 del numerador con el 12 del denominador.
- No se continúa simplificando, ya que el denominador es 1.

Se aplica la propiedad de la multiplicación de potencias de igual base, es decir, se mantiene el valor de la base, y se suman sus exponentes.

$$\longrightarrow 12^4: 12 = \frac{12^4}{12^1} = 12^{4-1} = 12^3 \longrightarrow \begin{array}{c} \text{Aplicamos la propiedad: "se mantiene la base (12), y sus exponentes se restan (4 - 1 = 3)"} \end{array}$$

DIVISIÓN DE POTENCIAS DE IGUAL EXPONENTE

Cuando dividimos potencias que tengan igual exponente, a^m y b^m, su cociente es equivalente a una potencia de igual exponente, y su base igual al cociente entre la base del dividendo y la base del divisor. Es decir:

$$a^{m}:b^{m}=(a:b)^{m}$$

Observemos los siguientes ejemplos para recordar esta propiedad.

Ejemplos

a) ¿Cómo expresar en una sola potencia 103: 53?

La potencia 10³ se representa como multiplicación iterada $10^3 = 10 \cdot 10 \cdot 10$

$$10^{3}: 5^{3} = \frac{10^{3}}{5^{3}} = \frac{10 \cdot 10 \cdot 10}{5 \cdot 5 \cdot 5} = \frac{10}{5} \cdot \frac{10}{5} \cdot \frac{10}{5} = 2^{1} \cdot 2^{1} \cdot 2^{1} \quad 2^{3}$$

Expresamos

multiplicación iterada $5^3 = 5 \cdot 5 \cdot 5$

La potencia 5³ se Agrupamos los cocientes, representa como separándolos según las separándolos según las bases de las potencias, en sus exponentes. este caso, 10/5.

Se mantiene la base 2, y se suman

Agrupamos 10/5, tantas veces que todos queden agrupados.

El valor de la expresión 10/5=10: 5=2, por lo que podemos decir que el valor de la base es 2, y su exponente 1. Es decir: 10/5=21

$$\longrightarrow$$
 10³:5³ (10:5)³ = 2³ \longrightarrow Aplicamos la propiedad: "se mantiene el exponente (3), y dividen las bases (10:5)"

b) Dada 18²: 3², ¿cómo la expresarías en una sola potencia?

La potencia 18² se representa como multiplicación iterada

$$18^{2}: 3^{2} = 18^{2} = 18 \cdot 18 = 18 \cdot 18 = 6^{1} \cdot 6^{1} = 6^{2}$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Expresamos

La potencia 3² $18^2: 3^2 = \frac{18^2}{2}$ multiplicación este caso, 18/3. iterada

 $3^2 = 3 \cdot 3$

Agrupamos los cocientes, separándolos según las se representa como bases de las potencias, en

Se mantiene la base 6, y se suman sus exponentes.

Agrupamos 18/3, tantas veces que todos queden agrupados.

El valor de la expresión 18/3=18: 3=6, por lo que podemos decir que su base es 6, y su exponente 1. Es decir: 18/3=61

$$\longrightarrow$$
 18²: 3² (18:3)² = 6² \longrightarrow Aplicamos la propiedad: "se mantiene el exponente (2), y dividen las bases (18:3)"

PRÁCTICA

I. Expresa cada potencia como multiplicación iterada:

Ejemplo \longrightarrow 2⁵ = 2 · 2 · 2 · 2 · 2

a) $3^4 =$

c) $5^3 =$

b) $1^3 =$

d) $4^2 =$

II. Expresa cada una de las siguientes multiplicaciones iteradas como potencia:

a) $3 \cdot 3 \cdot 3 =$

c) $7 \cdot 7 \cdot 7 \cdot 7 =$

b) $4 \cdot 4 =$

d) $2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 =$

III. Calcula el valor de cada potencia:

a) $3^2 =$

d) $1^5 =$

b) $4^3 =$

e) $6^2 =$

c) $5^1 =$

f) $10^2 =$

IV. Expresa las siguientes multiplicaciones como una sola potencia, usando la propiedad correspondiente:

a) $3^2 \cdot 3^4 =$

e) $2^3 \cdot 2^2 \cdot 2^4 =$

b) $6^4 \cdot 6 =$

f) $3^1 \cdot 3^3 \cdot 3^2 =$

c) $5^{\circ} \cdot 5^{\circ} =$

q) $8^5 \cdot 8^3 \cdot 8 =$

d) $10^2 \cdot 10^2 =$

h) $9^4 \cdot 9^0 \cdot 9^1 =$

V. Usando la propiedad correspondiente, expresa las siguientes multiplicaciones como una sola potencia:

a) $4^2 \cdot 6^2 =$

e) $3^5 \cdot 2^5 \cdot 4^5 =$

b) $10^3 \cdot 5^3 =$

f) $6^1 \cdot 8^1 \cdot 4^1 =$

c) $5^4 \cdot 7^4 =$

g) $2^3 \cdot 5^3 \cdot 2^3 =$

d) $9^5 \cdot 6^5 =$

h) $11^4 \cdot 2^4 \cdot 3^4 =$

VI. Expresa las siguientes divisiones como una sola potencia, usando la propiedad correspondiente:

a)
$$4^3:4^2=$$

e)
$$3^7:3^5=$$

b)
$$10^5:10^3=$$

f)
$$6^1:6^1=$$

g)
$$5^3:5=$$

d)
$$9^{10}: 9^5 =$$

h)
$$2^5:2^4=$$

VII. Usando la propiedad correspondiente, expresa las siguientes divisiones como una sola potencia:

a)
$$25^3:5^3=$$

e)
$$12^4:6^4=$$

b)
$$27^2:9^2=$$

c)
$$12^6:3^6=$$

g)
$$10^7: 2^7 =$$

d)
$$8^{10}:4^{10}=$$

h)
$$9^{10}:3^{10}=$$

DESAFÍO

"Pedro afirma que el área de un cuadrado de lado (53 · 8) cm, es igual a (59 · 82) cm2".

¿Estás de acuerdo con Pedro? Justifica tu respuesta utilizando las propiedades de las potencias.

OA 2 - 1° Medio

Actividades de apoyo 1º medio **Fichas para estudiantes**

Potencias de base y exponente natural