Actividad 3: Estandarización de distribuciones normales

PROPÓSITO

Los estudiantes reconocen el término "normal" desde una mirada estadística y admiten que sirve para analizar conjuntos de datos y juzgar el comportamiento de uno o de un grupo de ellos, en comparación con el resto. Se espera que comprendan el uso de la desviación estándar y cómo tomar decisiones a partir de ella, que utilicen la tabla probabilística y eviten cálculos tediosos. Igual que en la actividad anterior, se espera una actitud de respeto hacia la privacidad de los compañeros, sectores y culturas.

Objetivos de Aprendizaje

- **OA 2:** Fundamentar decisiones en situaciones de incerteza, a partir del análisis crítico de datos estadísticos y con base en los modelos binomial y normal.
- **OA c.** Tomar decisiones fundamentadas en evidencia estadística y/o en la evaluación de resultados obtenidos a partir de un modelo probabilístico.
- **OA f.** Evaluar modelos para estudiar un fenómeno, analizando críticamente las simplificaciones requeridas y realizando conexiones entre variables para predecir posibles escenarios de solución a un problema, y tomar decisiones fundamentadas.

Actitudes

• Actuar de acuerdo con los principios de la ética en el uso de la información y de la tecnología, respetando la propiedad intelectual y la privacidad de las personas.

Duración: 9 horas pedagógicas

DESARROLLO

ESTATURA DE RECIÉN NACIDOS

 En un Centro de Salud Familiar, se tiene registro de todos los niños a los que se ha atendido durante el primer semestre. Los siguientes datos corresponden al registro de la longitud (en centímetros) de todos los bebés de 6 meses controlados en ese periodo. Conexión interdisciplinaria: Ciencias para la Ciudadanía OA c, 3° y 4° medio

59cm; 60cm; 62cm; 63cm; 65cm; 65cm; 66cm; 67cm; 67cm; 68 cm; 70cm; 72cm

a. Completa la tabla y calcula el promedio y la desviación estándar de las 12 estaturas.

Tabla 1: Registro de estaturas y detalle del cálculo de la desviación estándar

n	x_n	$x_n - \bar{x}$	$(x_n - \bar{x})^2$
1	59		
2	60		
3	62		
4			
5			
6			
7			
8			
9			
10			
11			
12			
Promedio			

 $S_x \approx$

- b. ¿Cómo se interpreta el promedio y la desviación estándar en este contexto?
- c. Puedes usar la herramienta "Análisis de datos" de una planilla electrónica para calcular más rápido.
- 2. Respecto de la Figura 1 a continuación, responde:
 - a. ¿Qué representan los puntos azules?
 - b. ¿Qué representa la línea vertical roja?
 - c. ¿Qué representa la línea vertical naranja?
 - d. ¿Qué representa las líneas horizontales verdes?

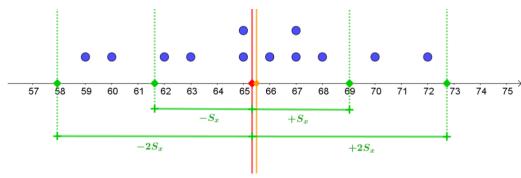


Fig. 1: Representación de las estaturas mediante diagrama de puntos.

- 3. Para interpretar el gráfico anterior, responde:
 - a. ¿Qué información se puede obtener calculando 65,33 + 3,9 = 69,23 y 65,33 3,9 = 61,43?
 - b. ¿Qué datos se encuentran en el intervalo (61,43; 69,23)? ¿Qué porcentaje del total de datos representan?
 - c. ¿Es correcto afirmar que 8 de los 12 niños controlados tienen una estatura entre 61,43 cm y 69,23 cm?
 - d. ¿Qué puedes afirmar sobre la diferencia entre la estatura máxima y la mínima?
 - e. ¿Qué puedes afirmar sobre la cantidad de datos que se encuentran a dos desviaciones estándar o menos del promedio?
 - f. ¿Qué distribución crees que responde a los datos graficados? Conjetura una respuesta, aunque los datos sean pocos, y justifica.

¿CÓMO DESCRIBIMOS LA NORMALIDAD?

- 1. Visita la página web DataChile (https://es.datachile.io/) y extrae datos de algún tema que te interese: economía, educación, vivienda, demografía, salud, educación cívica.
 - a. Haz un histograma para observar la distribución de los datos.
 - b. Marca el polígono de frecuencias en el mismo gráfico. Describe la forma de la curva.
- 2. Determina el promedio, la mediana y la desviación estándar para esos datos, utilizando una planilla electrónica.
 - a. Interpreta cada estadístico en relación con el contexto estudiado.
 - b. Compara los valores de la media y la mediana y señala una interpretación posible.
 - c. Marca en el histograma, con distintos colores, el promedio, la mediana y los intervalos $(\overline{x} \sigma, \overline{x} + \sigma) \ y \ (\overline{x} 2\sigma, \overline{x} + 2\sigma)$
 - d. Argumenta si se puede asegurar o no que la distribución de estos datos corresponde a una distribución normal o es asimétrica.
- 3. Determina la cantidad de datos que se encuentran en el intervalo $(\overline{x} \sigma, \overline{x} + \sigma)$ y el porcentaje de dichos datos respecto del total.
 - a. ¿Cómo se relaciona con el porcentaje de datos que se encuentran a una desviación estándar de la media que se describe en una distribución de datos normal?
 - b. Determina la cantidad de datos que se encuentran en el intervalo $(\overline{x}-2\sigma,\overline{x}+2\sigma)$ y el porcentaje de dichos datos respecto del total.
 - ¿Cómo se relaciona con el porcentaje de datos que se encuentran a una desviación estándar de la media que se describe en una distribución de datos normal?

- 4. Sobre los aportes de la desviación estándar:
 - a. Señala al menos una interpretación que se puede dar de σ sobre un conjunto de datos.
 - b. Indica cómo se usa para determinar si un dato específico está dentro de los márgenes de normalidad respecto de los demás datos de un mismo estudio (o experimento).
 - c. ¿Qué se considera normal en el contexto seleccionado?

UTILIZACIÓN DE LA TABLA PROBABILÍSTICA PARA Z

- 1. Observa la Figura 2. ¿Qué tipo de distribución tienen los datos de esta población?
 - a. ¿Cuál es la media? ¿Cuál es la desviación estándar?
 - b. ¿Puedes inferir el valor de la mediana y la moda? ¿Cuáles deberían ser?
 - c. ¿Cuál es el área total bajo la curva? ¿Cómo se relaciona con las probabilidades de los datos?
 - d. Porcentualmente, ¿cuántos datos se encuentran a 1, 2 o 3 desviaciones estándar de la media?
 - e. Relaciona la respuesta anterior con la probabilidad de que un dato de esta población tomado al azar se encuentre entre $(\overline{x} \sigma, \overline{x} + \sigma)$, entre $(\overline{x} 2\sigma, \overline{x} + 2\sigma)$ y entre $(\overline{x} 3\sigma, \overline{x} + 3\sigma)$.

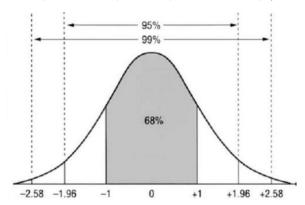


Fig. 2: Distribución normal estándar.

2. En internet⁴ puedes encontrar una lista de las probabilidades asociadas con los intervalos desde la media (z=0,00) hasta un valor específico de z. Se puede hallar las probabilidades de otros intervalos usando las entradas de la tabla y las operaciones de adición y sustracción, de acuerdo a las propiedades de las probabilidades.

Por ejemplo:

$$P(0 < z < 1,52) = 0,4357$$

Esto quiere decir que la probabilidad de tomar al azar un dato de la población distribuida normalmente que se encuentre entre 0 y 1,52, es 0,4357.

⁴ Por ejemplo: https://www.curriculumnacional.cl/link/https://es.slideshare.net/josejoaquinmunoz/tablas-dedistribucion-normal-con-la-probabilidad-definitiva-con-todos-los-valores-de-z

La Figura 3 muestra cómo usar la tabla de probabilidades:

Z	0	0.01	0.02	
0.0	0.0000	0.0040	0.0080	-
0.1	0.0398	0.0438	0.0478	(
0.2	0.0793	0.0832	0.0871	- (
0.3	0.1179	0.1217	0.1255	-
0.4	0.1554	0.1591	0.1628	-
0.5	0.1915	0.1950	0.1985	-
0.6	0.2257	0.2291	0.2324	- (
0.7	0.2580	0.2611	0.2642	(
0.8	0.2881	0.2910	0.2939	-
0.9	0.3159	0.3186	0.3212	(
1.0	0.3413	0.3438	0.3461	- (
1.1	0.3643	0.3665	0.3686	- 1
1.2	0.3849	0.3869	0.3888	(
1.3	0.4032	0.4049	0.4066	
1.4	0.4192	0.4207	0.4222	- (
1.5	0.4332	0.4345	0.4357	-
1.5	0.4452	0.4463	0,4474	1
17	O AFFA	A 4554	0.4573	

Fig. 3: Parte de la tabla de probabilidades de la distribución normal estándar.

- a. Determina P(0 < z < 0.91). ¿Qué interpretación tiene el resultado?
- b. Determina P(-1 < z < 0.91). ¿Cómo se debe usar la tabla en este caso? ¿Qué propiedades de las probabilidades te permiten llegar a la respuesta?
- c. Determina P(-2 < z < -1,1). ¿Qué interpretación tiene el resultado?
- d. Determina P(z < -1,1). ¿Qué interpretación tiene el resultado?
- e. Determina P(-2 < z). ¿Qué interpretación tiene el resultado?
- 3. Volviendo al caso de las estaturas de los recién nacidos.
 - a. Recuerda cuál es el valor de \overline{x} y σ .
 - b. Recuerda también que se podía obtener ciertas probabilidades aproximadas de valores x. Por ejemplo:

$$P(47.8 < x < 51.2) \text{ y } P(46 < x < 53)$$

ORIENTACIONES PARA EL DOCENTE

- 1. Se espera que analicen los aportes de la media y la desviación estándar para caracterizar una población con distribución normal. Ya han estudiado antes estas medidas, de tendencia central y de dispersión respectivamente, en distribuciones de datos no necesariamente normales.
- 2. Se propone un análisis con una cantidad muy limitada de datos, 12 estaturas, para que luego analicen 650 estaturas. Con esto, se espera que perciban que, a mayor cantidad de datos, más evidente es la aproximación a la curva normal y que, por ser datos empíricos, hay pequeñas variantes respecto de la definición. Por ejemplo: en este caso la media se acerca mucho a la mediana, pero no son iguales. Además, la cantidad de datos alejados una desviación estándar de la media (cantidad de datos en el intervalo $(\overline{x} \sigma, \overline{x} + \sigma)$) no es exactamente 68%, sino una cantidad próxima. Lo mismo ocurre con los 12 datos en el intervalo a dos desviaciones estándar de la media; en ese caso, el 100% de los datos pertenece a ese intervalo, a diferencia del 95% esperado.
- 3. Se sugiere que examinen qué representa una distribución normal estándar, junto con el valor de su media, moda, mediana, desviación estándar, y los intervalos a una o dos desviaciones estándar de la media. Se profundiza en el cálculo de probabilidades de un dato z cualquiera, que cumpla con una condición dada –por ejemplo: P(a < z < b)–, usando el puntaje z y la tabla de probabilidades.
- 4. Se sugiere los siguientes indicadores para evaluar formativamente los aprendizajes:
 - Utilizan la tabla de probabilidades para determinar la probabilidad de tomar, en forma aleatoria, un dato de una población distribuida normalmente.
 - Evalúan la pertinencia de usar modelos binomial o normal para interpretar situaciones de incerteza
 - Evalúan los alcances y límites de un argumento estadístico o probabilístico antes de tomar una decisión.

RECURSOS Y SITIOS WEB

Sitios sugeridos para estudiantes y profesores:

- ¿Qué es la desviación estándar?
 https://www.curriculumnacional.cl/link/https://support.minitab.com/es-mx/minitab/18/help-and-how-to/statistics/basic-statistics/supporting-topics/data-concepts/what-is-the-standard-deviation/
- Tabla de distribución normal Z
 https://www.curriculumnacional.cl/link/http://matepediaestadistica.blogspot.com/2016/01/tabla-de-distribucion-normal.html
- Distribución normal: ¿Es tan frecuente como parece?
 https://www.curriculumnacional.cl/link/http://www.scielo.cl/scielo.php?script=sci_arttext&pi d=S0034-98872012000400021
- Normal, simetría o asimetría
 https://www.curriculumnacional.cl/link/http://facilestadistica.wixsite.com/estadisticafacil/sin
 gle-post/2014/08/24/Estad%C3%ADstica-Descriptiva-III-Medidas-de-Forma-y-Medidas-de-Concentraci%C3%B3n
- Datos públicos de Chile
 https://www.curriculumnacional.cl/link/https://es.datachile.io/