El propósito de esta asignatura es enriquecer la comprensión de la realidad, facilitar la selección de estrategias para resolver problemas y contribuir al desarrollo del pensamiento crítico y autónomo en todos los estudiantes.

Documentos curriculares

Marco Curricular

Bases Curriculares 1° a 6° básico

Bases Curriculares 7º básico a 2º medio

Bases Curriculares 7º básico a 2º medio

Ficha Bases Curriculares 2012

Bases Curriculares Matemática 1° a 6°

Progresión de aprendizaje

Progresión de objetivos de aprendizaje para Matemática 1º a 6º básico

Progresión de objetivos de aprendizaje para Matemática de 1º a 6º básico

Progresión de objetivos de aprendizaje para Matemática de 7º Básico a 2º Medio

Progresión de objetivos de aprendizaje para Matemática de 7º Básico a 2º Medio

Visión global por unidades

Unidad 1

1° básico

Contar hasta 50, de 1 en 1 o por agrupaciones. Lectura y representación de números hasta 10. Patrones con figuras, sonidos, ritmos y números, también hasta 10.

58 horas pedagógicas

2° básico

Contar hasta 500, leer hasta 50 y representar, comparar y ordenar números hasta 50. Identificación de unidades y decenas. Cálculo mental de números hasta 20.

60 horas pedagógicas

3° básico

Estrategias de cálculo para entender operaciones de suma y resta con números hasta 1000. Uso de representaciones concretas y pictóricas, tabla de valor posicional.

57 horas pedagogicas

4° básico

Número hasta el 10.000. Algoritmos de la multiplicación y división en la resolución de problemas rutinarios en contextos cotidianos. Estrategias para resolver los problemas.

58 horas pedagógicas

5° básico

Resolución de problemas. Números naturales de más de seis cifras. Ecuaciones de primer grado. Comprensión de secuencias que admiten más de un patrón.

75 horas pedagógicas

6° básico

Múltiplos de números naturales, con números primos y compuestos. Razones y porcentajes, para comprender en profundidad las fracciones y los decimales.

80 horas pedagógicas

7° básico

Los estudiantes toman el primer contacto con los números negativos en esta unidad y reconocen que son necesarios para expresar cantidades de la vida diaria.

60 horas pedagógicas

8° básico

Operaciones con números enteros y resolución de problemas. Se empieza el trabajo con raíces cuadradas para calcular alturas de triángulos y para ampliar el registro simbólico.

57 horas pedagógicas

Unidad 2

1° básico

Conteo por agrupaciones de 10 unidades hasta 100. Lectura, representación, comparación y ordenamiento de números hasta 20. Inicio en la geometría.

56 horas pedagógicas

2° básico

Contar hasta 1.000, leer hasta 100. Estimación de cantidades de 0 a 100. Identificación de unidades y decenas hasta 100. Problemas con adiciones y sustracciones.

54 horas pedagógicas

3° básico

Trabajo con ecuaciones simples de una incógnita. Medición del perímetro de algunas figuras. Patrones numéricos. Aplicación de tablas de multiplicación y divisiones.

57 horas pedagogicas

4° básico

Trayectos de desplazamientos de un lugar a otro lugar. Vistas 3D. Medición del tiempo en relojes análogos y digitales. Longitudes. Construcción de ángulos.

57 horas pedagogicas

5° básico

Transformaciones isométricas. Medición de longitud y transformación de unidades de longitud. Cálculo de áreas. Ángulos. Representación de triángulos y cuadriláteros.

44 horas pedagógicas

6° básico

Inicio en el álgebra, usando expresiones con letras y ecuaciones. Relaciones entre valores. Formulación de reglas para descubrir valores desconocidos en las tablas.

44 horas pedagógicas

7° básico

En esta unidad, los estudiantes toman el primer contacto con la noción de variable y lo hacen por medio de generalizaciones de cantidades.

54 horas pedagógicas

8° básico

El foco de esta unidad está en el concepto de función, que se introduce como un cambio lineal.

69 horas pedagógicas

Unidad 3

1° básico

Adiciones y sustracciones hasta 10. Representaciones con material concreto, pictórico y simbólico. Cálculo mental. Dimensiones (longitud, largo y corto, alto y bajo).

58 horas pedagógicas

Más información

2° básico

Describir, comparar y construir figuras 2D y 3D. Adiciones y sustracciones. Registro de datos para estadísticas. Medición de objetos, usando unidades no estandarizadas.

60 horas pedagógicas

Más información

3° básico

Tablas de multiplicación de memoria (10x10). Uso de programas computacionales que complementen el aprendizaje. Concepto de tiempo y duración de distintos eventos.

57 horas pedagogicas

Más información

4° básico

Reconocer a las fracciones como partes de un entero. Números mixtos. Ecuaciones de un paso. En Geometría, la simetría, el ángulo y la función de un transportador.

57 horas pedagogicas

Más información

5° básico

Concepto de fracción y decimal. Iniciar con el álgebra, descubriendo las ecuaciones asociadas a problemas.

75 horas pedagógicas

Más información

6° básico

Superficies y volúmenes de cubos y paralelepípedos. Construcción de ángulos y triángulos de manera manual. Transformaciones isométricas.

70 horas pedagógicas

Más información

7° básico

Relaciones entre la suma de ángulos interiores y exteriores de polígonos. Trabajo con el círculo y la relación entre el diámetro y el perímetro, encontrando una estimación de pi.

57 horas pedagógicas

Más información

8° básico

El foco de esta unidad está en el teorema de Pitágoras, que se introduce desde lo concreto de sus aplicaciones, con dibujos explicativos y con una demostración matemática, pero sencilla del mismo.

48 horas pedagógicas

Más información

Unidad 4

1° básico

Adiciones y sustracciones hasta 20. Resolución de problemas. Habilidades de representar y modelar. Líneas rectas y curvas. Estadística.

56 horas pedagógicas

2° básico

Lectura de la hora y media hora en relojes digitales, y de pictogramas con escala y gráficos de barra simple. Patrones numéricos. Inicio de la multiplicación.

54 horas pedagógicas

3° básico

Desarrollo del pensamiento espacial: estudio de figuras en 2D, reconocimiento de figuras reflejadas, trasladadas y rotadas. Ángulos de 45º y 90º.

57 horas pedagogicas

4° básico

Trabajo con fracciones. Los números decimales a partir de los números mixtos, como representantes de cantidades parciales y enteras (en forma pictórica y simbólica).

56 horas pedagógicas

5° básico

Estadística: lectura e interpretación de tablas y gráficos (de barras y circulares). Azar: posibilidad de ocurrencia de un evento. Concepto de promedio aritmético.

34 horas pedagógicas

6° básico

Estadística. Lectura e interpretación de gráficos de barra doble y circulares. Azar: predicciones, realización de experimentos con dados y monedas.

34 horas pedagógicas

7° básico

Realización de encuestas, representación de datos mediante tablas de frecuencia y utilización de gráficos.

57 horas pedagógicas

8° básico

Trabajo con los conceptos de medidas de posición, percentiles y cuartiles y representación de los datos, utilizando varios tipos de gráficos.

54 horas pedagógicas

Orientaciones Curriculares

Introducción a Matemáticas en los Programas de Estudio

La asignatura de matemática es una herramienta que permite al alumno el desarrollo de un pensamiento lógico, ordenado, crítico y autónomo y de actitudes como la precisión y la rigurosidad.

Aprender matemática ayuda a comprender la realidad y proporciona herramientas necesarias para desenvolverse en la vida cotidiana. Entre estas se encuentran la selección de estrategias para resolver problemas, el análisis de la información proveniente de diversas fuentes, la capacidad de generalizar situaciones y de evaluar la validez de resultados, y el cálculo. Todo esto contribuye al desarrollo de un pensamiento lógico, ordenado, crítico y autónomo y de actitudes como la precisión, la rigurosidad, la perseverancia y la confianza en sí mismo, las cuales se valoran no solo en la matemática, sino también en todos los aspectos de la vida.

El aprendizaje de la matemática contribuye también al desarrollo de habilidades como el modelamiento, la argumentación, la representación y la comunicación. Dichas habilidades confieren precisión y seguridad en la presentación de la información y su vez, compromete al receptor a exigir precisión en la información y en los argumentos que recibe.

El conocimiento matemático y la capacidad para usarlo tienen profundas consecuencias en el desarrollo, el desempeño y la vida de las personas. En efecto, el entorno social valora el conocimiento matemático y lo asocia a logros, beneficios y capacidades de orden superior. De esta forma, el aprendizaje de la matemática influye en el concepto que niños, jóvenes y adultos construyen sobre sí mismos y sus capacidades. El proceso de aprender matemática, por lo tanto, interviene en la capacidad de la persona para sentirse un ser autónomo y valioso en la sociedad. En consecuencia, la calidad, pertinencia y amplitud de ese conocimiento afecta las posibilidades y la calidad de vida de las personas y, a nivel social, afecta el potencial de desarrollo del país.

La matemática ofrece también la posibilidad de trabajar con entes abstractos y sus relaciones. Esto permite a los estudiantes una comprensión adecuada del medio simbólico y físico en el que habitan, caracterizados por su alta complejidad. En estos espacios, la tecnología, las ciencias y los diversos sistemas de interrelaciones se redefinen constantemente, lo que requiere de personas capaces de pensar en forma abstracta, lógica y ordenada.

 

Organización Curricular Matemáticas

Las Bases Curriculares establecen Objetivos de Aprendizaje (OA) que integran habilidades, conocimientos y actitudes.

1. Habilidades

En la educación básica, la formación matemática se logra con el desarrollo de cuatro habilidades del pensamiento matemático, que se integran con los objetivos de aprendizaje y están interrelacionadas entre sí.

Resolver problemas

Resolver problemas es tanto un medio como un fin para lograr una buena educación matemática. Se habla de resolución de problemas, en lugar de simples ejercicios, cuando el estudiante logra solucionar una situación problemática dada, sin que se le haya indicado un procedimiento a seguir. A partir de estos desafíos los alumnos primero experimentan, luego escogen o inventan estrategias (ensayo y error, metaforización o representación, simulación, transferencia desde problemas similares ya resueltos, etc.) y entonces las aplican. Finalmente comparan diferentes vías de solución y evalúan las respuestas obtenidas.

Por ejemplo:
Los alumnos tienen que buscar todos los números de dos dígitos, cuyas cifras sumen 7.

Los alumnos:
- buscan por ensayo y error
- descomponen el número 7, para luego formar todos los números con las cifras encontradas
- descubren un patrón y lo aplican
- usan la propiedad conmutativa
- comparan las estrategias usadas
- las evalúan
- comunican y fundamentan su estrategia preferida

Modelar

El objetivo de esta habilidad es lograr que el estudiante construya una versión simplificada y abstracta de un sistema, usualmente más complejo, pero que capture los patrones claves y lo exprese mediante lenguaje matemático. Por medio del modelamiento matemático, los alumnos aprenden a usar una variedad de representaciones de datos y a seleccionar y aplicar métodos matemáticos apropiados y herramientas para resolver problemas del mundo real.

Modelar constituye el proceso de utilizar y aplicar modelos, seleccionarlos, modificarlos y construir modelos matemáticos, identificando patrones característicos de situaciones, objetos o fenómenos que se desea estudiar o resolver, para finalmente evaluarlos.

Aunque construir modelos suele requerir el manejo de conceptos y métodos matemáticos avanzados, en este currículum se propone comenzar por actividades de modelación tan básicas como formular una ecuación que involucra adiciones para expresar una situación de la vida cotidiana del tipo: "Invitamos 11 amigos, 7 ya llegaron, ¿cuántos faltan?"; un modelo posible sería 7 +  = 11. La complejidad de las situaciones a modelar dependerá del nivel en que se encuentre cada estudiante. 

Representar

Corresponde a la habilidad de traspasar la realidad desde un ámbito más concreto y familiar para el alumno hacia otro más abstracto. Metaforizar o buscar analogías de estas experiencias concretas, facilita al estudiante la comprensión del nuevo ámbito abstracto, en que habitan los conceptos que está recién construyendo o aprendiendo.

Por ejemplo:
"Los números son cantidades", "los números son posiciones en la recta numérica", "sumar es juntar, restar es quitar", "sumar es avanzar, restar es retroceder", "los números negativos son deudas", "las probabilidades son porciones, o masas, o pesos...".
En sentido inverso, el alumno representa para operar con conceptos y objetos ya construidos. Por ejemplo, cuando representa una ecuación como x+ 2 = 5, mediante una balanza en equilibrio; en un platillo se ponen 2 cubos y una bolsita "x". En el otro platillo se colocan 5 cubos. Para que la balanza esté equilibrada, la bolsita debe llenarse con 3 cubos adentro. Este procedimiento se registrará por medio de dibujos esquemáticos.

De acuerdo a este ejemplo, se ve la aplicación de la metodología COPISI. Este abordaje metodológico considera trabajar con representaciones concretas, pictóricas y simbólicas, donde los conceptos abstractos se representan por signos y símbolos.

Manejar una variedad de representaciones matemáticas de un mismo concepto y transitar fluidamente entre ellas permitirá a los estudiantes lograr un aprendizaje significativo y desarrollar su capacidad de pensar matemáticamente. Durante la enseñanza básica, se espera que aprendan a usar representaciones pictóricas, como diagramas, esquemas y gráficos, para comunicar cantidades, operaciones y relaciones, y luego que conozcan y utilicen el lenguaje simbólico y el vocabulario propio de la disciplina.

Argumentar y comunicar

La habilidad de argumentar se expresa al descubrir inductivamente regularidades y patrones en sistemas naturales y matemáticos y tratar de convencer a otros de su validez. Es importante que los alumnos puedan argumentar y discutir, en instancias colectivas, sus soluciones a diversos problemas, escuchándose y corrigiéndose mutuamente. Deben ser estimulados a utilizar un amplio abanico de formas de comunicación de sus ideas, incluyendo metáforas y representaciones.

En la enseñanza básica se apunta principalmente a que los alumnos establezcan progresivamente "islotes deductivos"; es decir, cadenas cortas de implicaciones lógicas, que les permitirán hacer predicciones eficaces en variadas situaciones concretas. Se espera que, en un ambiente de aprendizaje propicio, desarrollen su capacidad de verbalizar sus intuiciones y concluir correctamente, así como detectar afirmaciones erróneas o generalizaciones abusivas.

Por ejemplo:
Los estudiantes describen el procedimiento que usaron para resolver el problema anterior:
cuáles dígitos de números de dos cifras suman 7
los alumnos dan argumentos para fundamentar las soluciones obtenidas
 

2. Ejes temáticos

Los programas de estudio de Matemática han sido redactados en Objetivos de Aprendizaje, que muestran desempeños medibles y observables de los estudiantes. Estos se organizan en cinco ejes temáticos:

Números y operaciones

Este eje abarca tanto el desarrollo del concepto de número como también la destreza en el cálculo mental y escrito. Una vez que los alumnos asimilan y construyen los conceptos básicos, con ayuda de metáforas y representaciones, aprenden los algoritmos de la adición, sustracción, multiplicación y división, incluyendo el sistema posicional de escritura de los números. Se espera que desarrollen las estrategias mentales para calcular con números de hasta 4 dígitos, ampliando el ámbito numérico en los cursos superiores, junto con introducir los números racionales (como fracciones, decimales y porcentajes) y sus operaciones.

En todos los contenidos, y en especial en el eje de Números, el aprendizaje debe iniciarse por medio de la manipulación con material concreto, pasando luego a una representación pictórica que finalmente se reemplaza por símbolos. Transitar de lo concreto a lo pictórico y de lo pictórico a lo simbólico, en ambos sentidos, facilita la comprensión. Este método corresponde al modelo concreto, pictórico, simbólico (COPISI).

Patrones y Álgebra

En este eje, se pretende que los estudiantes expliquen y describan múltiples relaciones, como parte del estudio de la matemática. Los alumnos buscarán relaciones entre números, formas, objetos y conceptos, lo que los facultará para investigar las formas, las cantidades y el cambio de una cantidad en relación con otra.

Los patrones (observables en secuencias de objetos, imágenes o números que presentan regularidades) pueden ser representados en formas concretas, pictóricas y simbólicas, y los estudiantes deben ser capaces de transportarlos de una forma de representación a otra. La percepción de los patrones les permite predecir y fundamentar su razonamiento al momento de resolver problemas. Una base sólida en patrones facilita el desarrollo de un pensamiento matemático más abstracto en los niveles superiores, como el pensamiento algebraico.

Geometría

En este eje, se espera que los estudiantes aprendan a reconocer, visualizar y dibujar figuras, y a describir las características y propiedades de figuras 2D y 3D en situaciones estáticas y dinámicas. Se entregan algunos conceptos para entender la estructura del espacio y describir con un lenguaje más preciso lo que ya conocen en su entorno. El estudio del movimiento de los objetos -la reflexión, la traslación y la rotación- busca desarrollar tempranamente el pensamiento espacial de los alumnos.

Medición

Este eje pretende que los estudiantes sean capaces de cuantificar objetos según sus características, para poder compararlos y ordenarlos. Las características de los objetos -ancho, largo, alto, peso, volumen, etc.- permiten determinar medidas no estandarizadas. Una vez que los alumnos han desarrollado la habilidad de hacer estas mediciones, se espera que conozcan y dominen las unidades de medida estandarizadas. Se pretende que sean capaces de seleccionar y usar la unidad apropiada para medir tiempo, capacidad, distancia y peso, usando las herramientas específicas de acuerdo con el objeto de la medición.

Datos y probabilidades


Este eje responde a la necesidad de que todos los estudiantes registren, clasifiquen y lean información dispuesta en tablas y gráficos y que se inicien en temas relacionados con el azar. Estos conocimientos les permitirán reconocer estas representaciones en su vida familiar. Para lograr este aprendizaje, es necesario que conozcan y apliquen encuestas y cuestionarios por medio de la formulación de preguntas relevantes, basadas en sus experiencias e intereses, y después registren lo obtenido.
 

3. Actitudes

Las bases curriculares de Matemática promueven un conjunto de actitudes que derivan de los Objetivos de Aprendizaje Transversales (OAT). Estas se deben desarrollar de manera integrada con los conocimientos y habilidades propios de la asignatura, promovidas de manera sistemática y sostenida, y deben fomentarse de forma intencionada por el profesor por medio del diseño de las actividades de aprendizaje, de las interacciones y rutinas, así como del modelaje que realice el docente en su interacción cotidiana con los estudiantes.

Las actitudes a desarrollar en la asignatura de Matemática son las siguientes:

a. Manifestar curiosidad e interés por el aprendizaje de las matemáticas

Esta actitud se debe promover a partir del trabajo que se realice para alcanzar los objetivos de la asignatura. Dicho trabajo debe poner el acento en el interés por las matemáticas, tanto por su valor como forma de conocer la realidad, como por su relevancia para enfrentar diversas situaciones y problemas. Se recomienda mostrarles el vínculo que tienen con la vida real, por medio de los ejercicios, ejemplos y trabajo con material concreto (uso del dinero, identificación de los días y semanas, uso de software, "desafíos" que plantean las actividades, entre otros), promoviendo con esto tanto el interés por el conocimiento en esta área como el reconocimiento de su relevancia.

b. Abordar de manera flexible y creativa la búsqueda de soluciones a problemas

Los objetivos de aprendizaje ofrecen oportunidades para desarrollar la flexibilidad y creatividad en la búsqueda de soluciones a problemas. Para desplegar esta actitud, deberá explorar diversas estrategias, escuchar el razonamiento de los demás, y usar el material concreto de diversas maneras.

c. Demostrar una actitud de esfuerzo y perseverancia

El programa de estudio requiere que los estudiantes cultiven el esfuerzo y la perseverancia, conscientes de que el logro de ciertos aprendizajes puede implicar mayor dedicación. Por otra parte, es relevante que el alumno aprenda a reconocer errores y a utilizarlos como fuente de aprendizaje, desarrollando la capacidad de autocrítica y de superación. Esto lo ayudará a alcanzar los aprendizajes de la asignatura y a enriquecer su vida personal.

d. Manifestar un estilo de trabajo ordenado y metódico

Lograr los objetivos de aprendizaje requiere de un trabajo meticuloso con los datos y la información.
Puede ser fomentada mediante la recolección y el registro de datos en los cuadernos, mantener el orden en los materiales personales y de curso, seguir los métodos para resolver determinados problemas, etc.
Esto se debe trabajar desde los primeros niveles, sin contraponerlo con la creatividad y flexibilidad.

e. Manifestar una actitud positiva frente a sí mismo y sus capacidades

A lo largo del desarrollo de la asignatura, se debe incentivar la confianza en las propias capacidades por medio de la constatación y la valoración de los propios logros en el aprendizaje. Esto fomenta la seguridad necesaria para participar en clases, reforzar los conocimientos y aclarar dudas. Asimismo, favorece una actitud activa hacia el aprendizaje, que se traduce en elaborar preguntas y buscar respuestas. Aquí juega un papel importante la forma de enfrentar el error, como una oportunidad de aprender más que como un fracaso.

f. Expresar y escuchar ideas de forma respetuosa

Se espera que los estudiantes presenten y escuchen opiniones y juicios de manera adecuada, con el fin de enriquecer los propios conocimientos y los de sus compañeros.
 

 

Orientaciones didácticas Matemáticas

El docente, desde ésta perspectiva, debe promover que los estudiantes avancen progresivamente hacia un pensamiento simbólico que requiere de un mayor nivel de abstracción.

La búsqueda de nuevos conocimientos, habilidades y de una comprensión más profunda en las matemáticas ha llevado a los docentes a desarrollar variados lineamientos didácticos y diversas metodologías de enseñanza. La literatura reciente, en general, indica que el éxito es posible con cualquiera de estas formas metodológicas, si el profesor es capaz de desarrollar situaciones de aprendizaje que generen un diálogo, una discusión matemática en relación con un contenido, y en las cuales se estimule la curiosidad y la capacidad de todos los alumnos.

El docente, desde esa perspectiva, debe promover que los estudiantes den sentido a los contenidos matemáticos que aprenden y construyan su propio significado de la matemática para llegar a una comprensión profunda. En este sentido, se espera que el profesor desarrolle un modelo pedagógico que favorezca la comprensión de conceptos matemáticos y no la mera repetición y mecanización de algoritmos, definiciones y fórmulas. Para esto, debe establecer conexiones entre los conceptos y las habilidades matemáticas, debe planificar cuidadosamente situaciones de aprendizaje donde los alumnos puedan demostrar su comprensión por sobre la mecanización, usando una variedad de materiales, luego con imágenes y representaciones "pictóricas" para así avanzar, progresivamente, hacia un pensamiento simbólico que requiere de un mayor nivel de abstracción.

Es muy importante desarrollar la capacidad de hacer matemática, promoviendo múltiples estrategias o maneras para resolver problemas. Esto último debe ser el foco de toda la enseñanza de la matemática, ya que brinda al estudiante la ocasión de afrontar situaciones desafiantes que requieren de variadas habilidades, destrezas y conocimientos, que no siguen esquemas prefijados.

Los niños pueden solucionar problemas en distintos niveles de abstracción, transitando en ambos sentidos desde el material concreto a las representaciones simbólicas. Esta es la esencia del modelo "concreto, pictórico, simbólico" que se designa con la sigla COPISI. La manipulación de material concreto y su representación pictórica mediante esquemas simples (cruces, marcas, círculos, cuadraditos, marco de 10, tabla de 100 y recta numérica) permite a los estudiantes desarrollar imágenes mentales. Con el tiempo, prescinden gradualmente de los materiales y representaciones pictóricas, y operan solamente con símbolos.

Transitar entre los niveles de representación, entre lo concreto y lo abstracto, no tiene un orden preestablecido. Se puede representar primero un símbolo matemático con un modelo gráfico, por ejemplo, un casillero en la "tabla de 100", para luego transformarlo a una situación real. El hecho de transitar frecuentemente entre un modo u otro fija los conceptos hasta transformarlos en imágenes mentales. De este modo, a la larga podrán ser capaces de operar con los números, trabajar con patrones, figuras 2D y 3D entre otros, sin material concreto o pictórico. Se busca que el docente guíe esta transición, atendiendo a la diversidad de sus estudiantes.

Para que el aprendizaje a través del modelo COPISI sea efectivo, es importante que, tras las actividades, el profesor promueva una discusión con preguntas, observaciones, explicaciones y ejemplos. De este modo, los alumnos podrán reconstruir los conocimientos recién adquiridos. Asimismo, el modelo requiere que los alumnos demuestren que comprenden los contenidos, en la forma que el profesor y los mismos estudiantes estimen conveniente.

En el proceso de aprendizaje, el docente debe de tomar en cuenta los siguientes factores para un aprendizaje exitoso.

  • Experiencias previas: en la transmisión de contenidos nuevos, es recomendable que el docente recurra a las experiencias previas de los estudiantes y a los conocimientos, destrezas y habilidades existentes. En este proceso, es clave identificar las diferencias entre los alumnos y planificar las clases de acuerdo a estas experiencias de tal manera de generar situaciones de aprendizaje significativas que permitan la comprensión profunda. Esto se puede lograr diferenciando a los grupos o estudiantes y asignándoles tareas, ejercicios o problemas de acuerdo con sus fortalezas y necesidades, considerando siempre el logro de la totalidad de los objetivos del nivel.
     
  • Aprender haciendo y centrar el aprendizaje en el estudiante: para que los alumnos comprendan los contenidos matemáticos, necesitan tener experiencias de resolución de problemas en las que manipulan material didáctico que les permite descubrir conceptos, estrategias y soluciones variadas. Posteriormente, es importante que reflexionen sobre su proceso de aprendizaje y lo comuniquen. De este modo, se favorece en mayor medida la comprensión. Los errores son parte de este proceso y se acogen positivamente como oportunidades de conversación y búsqueda de soluciones más adecuadas.
     
  • Uso del material concreto: al proveer una experiencia práctica con el material didáctico, el profesor facilita el aprendizaje al alumno. El uso del material concreto es indispensable, pero no garantiza una buena comprensión si no hay una buena conducción por parte del docente. Para esto, es necesario que, en las actividades, los profesores ayuden a los alumnos a establecer conexiones entre el material y las matemáticas explícitas y a proponer preguntas que los llevarán a una comprensión profunda de las matemáticas. Cabe destacar que, en los primeros niveles, el docente debe velar por que el material concreto esté siempre presente, en la sala de clases, en su casa e incluso en las evaluaciones.
     
  • Recurrir frecuentemente a metáforas: estas les permitirán comprender el significado de los conceptos como "Los números son cantidades", "los números son posiciones en la recta numérica", "sumar es juntar, restar es quitar", "sumar es avanzar, restar es retroceder". En los primeros niveles, las metáforas son la base para la comprensión de conceptos abstractos.
     
  • Progresión de complejidad: la construcción de una base sólida de aprendizaje considera que cualquier nuevo aprendizaje se asimilará a los aprendizajes previos. Por esto, el docente debe saber qué habilidades y conceptos aprendieron los alumnos con anterioridad, con el fin de activarlos estratégicamente, para el aprendizaje futuro. En este contexto la función del profesor es facilitar que los alumnos establezcan relaciones entre lo conocido y lo nuevo que está por aprenderse.
     
  • Aprendizaje y conexiones: es recomendable para el profesor establecer las conexiones entre los conceptos y las habilidades matemáticas de manera de impedir que el aprendizaje de los alumnos sea fragmentado. Se debe, además, favorecer las conexiones con las otras asignaturas. Se espera que esto permita a los estudiantes tomar conciencia del contexto en el que se inserta el conocimiento, aplicarlo y de este modo, desarrollar una red de conceptos relacionados.
     
  • Repasar ideas básicas y ejercitar: es importante reforzar y repasar los conceptos y los principios básicos de las matemáticas. Para esto, el docente debe considerar la ejercitación para asegurar la comprensión, pero, a su vez, desde la repetición, el profesor debe incentivar a los alumnos a abordar problemas con mayor desafío y guiarlos a realizar una verdadera actividad matemática.

  • La retroalimentación: es muy importante que los estudiantes desarrollen una visión positiva de las matemáticas y que se sientan capaces de desempeñarse con una positiva autoestima y con seguridad. Para esto, es recomendable que el docente reconozca el esfuerzo de los alumnos, sus observaciones y la iniciativa para explorar nuevos conocimientos por sí mismos, en un ambiente que acoge todos los puntos de vista. Se deben aprovechar las oportunidades para generar discusiones tanto sobre las vías de solución como respecto de la efectividad de las estrategias escogidas. En esta diversidad, el alumno descubre cómo mejorar y superarse en su proceso de aprendizaje. En entrevistas personales, el profesor apoya al alumno a revisar su proceso e identificar las áreas que necesitan modificarse y aquellas que ya logradas.

  • Comunicación y aprendizaje cooperativo: en la elaboración de las múltiples tareas de la asignatura, es importante que el docente favorezca la comunicación y la colaboración entre los estudiantes. Analizar, evaluar y representar resultados en común son actividades esenciales, porque profundizan, estimulan el pensamiento crítico y ponen a prueba el aprendizaje. En este punto, son recomendables las conferencias matemáticas y/o la redacción individual de los procesos en forma de un diario matemático.
     
  • El uso de Tecnologías de Información y Comunicación (TIC): en el primer ciclo de la enseñanza básica, el uso de la tecnología es un complemento al desarrollo de los conceptos matemáticos. El registro de los procesos COPISI en papel puede alternarse con medios tecnológicos, si la infraestructura y los medios disponibles del colegio lo permiten.


Las estrategias mentales y el cálculo de la operatoria necesitan, sin embargo, periodos de exploración, comprensión y ejercitación prolongados antes del uso de una calculadora. La utilización de este medio para verificación de resultados, para buscar patrones, comprobar conjeturas y modelos es adecuado para los cursos superiores de la básica. El software educativo amplía las posibilidades de ejercitación motivante y de acceso a información.





 

 

La evaluación del aprendizaje matemático

La evaluación debe realizarse como un continuo dentro de las actividades en la sala de clases, pues está inserta en un proceso de aprendizaje.

El proceso de evaluación ayuda tanto al profesor como al alumno a conocer los avances y las áreas que necesitan fortalecerse para continuar el proceso de aprendizaje. Con esta información, el docente puede tomar decisiones para modificar su planificación y adecuarla mejor a las necesidades de sus estudiantes. Por su parte, los alumnos podrán focalizar sus esfuerzos, con la confianza de que podrán mejorar sus resultados.
Es importante que la evaluación se realice como un continuo dentro de las actividades en la sala de clases, pues está inserta en un proceso de aprendizaje. En ningún caso es recomendable una exclusiva evaluación final.

A continuación se presentan sugerencias de evaluaciones formativas y calificativas, considerando la amplia gama de instrumentos existentes. Los ejemplos corresponden a formas de evaluación que permita a los alumnos demostrar sus habilidades y conocimientos dentro de la hora de clases.

Registros anecdóticos: consiste en anotar con una frase breve, durante las actividades en la sala de clases, observaciones individuales respecto del desempeño del alumno en ese trabajo puntual.

Diario matemático: es un cuaderno, o carpeta, donde el alumno desarrolla estrategias personales, exploraciones, definiciones personales o descubrimientos. El profesor puede observar estos registros, orientarse en el desarrollo de las habilidades de sus estudiantes y verificar la comprensión de los conceptos de acuerdo al lenguaje que utiliza el alumno para explicar su pensamiento.

Trabajo colaborativo: dentro de una clase, los alumnos solucionan en pares o grupos una tarea específica, como explorar un material, definir un concepto, clasificar, calcular, resolver un problema y argumentar su resolución. La tarea debe tener objetivos claros y medibles, acordados previamente.

Portafolio:
es una carpeta donde el alumno puede guardar trabajos de la rutina diaria, relacionados con diferentes temas, en los que él considera que ha tenido un buen desempeño. Esta selección se realiza en compañía del profesor con una periodicidad determinada por él (una a tres veces por semestre). Esta herramienta es una evidencia para el profesor, que, a la vez, permite una autoevaluación por parte del alumno.

Lista de cotejo:
registros de alguna habilidad específica que se demuestra durante una actividad pensada para este objetivo. La evaluación puede ser individual o grupal. Ejemplo: diferenciar números pares e impares, explicar la clasificación de acuerdo de un criterio, interpretar un pictograma, construir una figura reflectada (simétrica).

Entrevista individual:
mientras el curso trabaja en una tarea, el profesor dialoga con uno o más alumnos de un mismo nivel de desempeño, acerca de un concepto, un desafío o una pregunta relacionada con el tema de la hora de clase. El profesor registra esta información como registro anecdótico o en una lista de cotejo.

Compartir estrategias: los alumnos resuelven un desafío de manera individual o en pares. Luego voluntariamente comparten su estrategia de resolución frente a sus compañeros. El profesor llama a otros 2 o 3 voluntarios que muestren estrategias diferentes a las que ya se expusieron y las anotan en un registro anecdótico. El profesor planifica estas presentaciones para que todos sus alumnos puedan participar dentro de un mes.

Autoevaluación:
al finalizar un tema o unidad, el profesor da a los alumnos la oportunidad de trabajar con un material que les permite autocorregirse. Este puede ser una hoja de trabajo con las respuestas atrás. Con los resultados de este trabajo, los alumnos tienen la posibilidad de determinar su avance o aquello que deben reforzar, corregir su trabajo con ayuda de otros compañeros, completar su trabajo con recursos que estén a su alcance (cuaderno, libro, afiches...), anotar sus dudas y, en última instancia, pedir ayuda al profesor.

Módulos

Ejes e indicadores

Sugerencias y comentarios

  • Contenido
  • Diseño
  • Estructura
  • Ingeniería