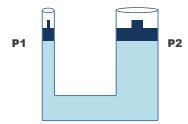
	MÓDULO	OLEOHIDRÁULICA BÁSICA			PROFESOR
CORPORACION EDUCACIONAL	UNIDAD I	FUNDAMENTOS 3			ALUMNO
ADOTEC	GUÍA DE TRABAJO Nº 5	Fuerzas y desplazamiento.		PRÁ	CTICA N°
			PPT N° 3		
				OTRO	
NOMBRE			FECHA		CURSO
NOMBRE			FECHA		CURSO

OBJETIVO: Resolver problemas de presión, fuerza, área y recorrido.

LUGAR: Sala.

TIEMPO: 60 min.

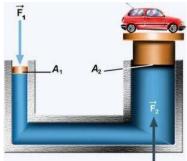

DINÁMICA DE TRABAJO: Individual o grupal.

RECURSOS:

Presentación ppt Oleohidráulica Fundamentos N°3.

ACTIVIDADES:

1. La siguiente matriz, llamada matriz de Pascal, representa una situación igual a la de dos jeringas de distinto tamaño unidas por una manguera.



a) Al aplicar una fuerza sobre el pistón o émbolo 1 **(P1)** éste ¿tendrá un desplazamiento mayor o menor que el pistón 2 **(P2)**? ¿Cómo se explica esto?

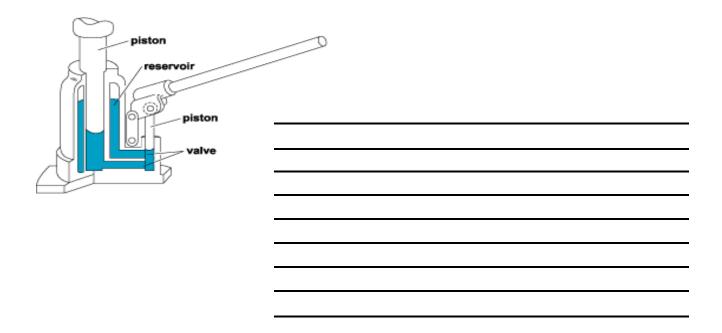
b) Al aplicar una fuerza sobre el pistón 1 y establecer la comparación con la fuerza que es capaz de sostener el pistón 2 ¿Cuál de ellas es mayor? ¿Por qué razón?

2. Observe la siguiente figura que muestra en equilibrio una fuerza F_1 (que puede ser ejercida por un peso o por un hombre) y un auto.

a) Si se requiere levantar el auto ¿Qué acción habría que realizar?

b) ¿Cómo explicaría usted que la fuerza aplicada sobre el pistón de menor área es menor que el peso del auto y aun así se mantienen en equilibrio?

3.	Como sabemos, las fuerzas se multiplican en la misma razón en que se encuentran las áreas. Responde a las siguientes preguntas considerando una matriz de Pascal cuyos émbolos tienen un área de $1\mathrm{cm}^2$ y $10\mathrm{cm}^2$ respectivamente.
a)	Si se aplica una fuerza de 6 kilógramos fuerza en el émbolo pequeño ¿Cuál será la fuerza resultante en el émbolo mayor?
b)	¿Qué fuerza habría que aplicar en el émbolo pequeño para mantener en equilibrio un peso de 20 kilógramos peso en el émbolo mayor?
c)	Si se aplica una fuerza de 15 kilógramos peso en el émbolo pequeño ¿Se podría desplazar o levantar un objeto que pese 60 kilógramo peso situado en el émbolo mayor? Justifique su respuesta.
d)	Si se instala un objeto de 3 kilógramos de peso sobre el émbolo pequeño y uno de 30 kilógramos de peso en el émbolo mayor. ¿Podrían estos objetos estar en equilibrio? ¿Por qué?
e)	¿Sería suficiente aplicar una fuerza de 5 kilógramos peso en el émbolo menor para levantar un objeto cuyo peso es de 100 kilógramo peso ubicado sobre el émbolo mayor? Justifique su respuesta.


4.	Considerando que los desplazamientos de los émbolos se realizan en forma inversa a la relación entre las áreas. Responda las siguientes preguntas considerando una matriz de Pascal cuyos émbolos tienen un área de 3 cm² y 12 cm² respectivamente.
a)	Si el émbolo pequeño se desplaza 24 cm ¿Cuánto se desplazará el émbolo de mayor área?
b)	Si el émbolo grande se desplazó 2 cm ¿Cuánto se desplazó el émbolo de menor área?
c)	¿Cuánto habría que desplazar el émbolo pequeño para que el de mayor área se desplace 6 cm?
5.	Si en una matriz de Pascal se aplica una fuerza de 5 kilógramos en el émbolo de menor área y se obtiene una fuerza de 50 kilógramos en el de mayor área:
a)	¿En qué razón se encuentran sus áreas?
b)	Si el émbolo de menor área se desplaza 15cm ¿Cuánto se desplazará el de mayor área?

6.	Si en una matriz de Pascal al aplicar una fuerza en el émbolo de menor área,
	éste se desplaza el doble que el de mayor área y el pistón menor tiene un área
	de 7cm.

a) ¿Cuál será el área del pistón mayor?

b) Si se ejerce una fuerza de 6 libras en el émbolo de menor área. ¿Cuál será la fuerza resultante en el émbolo mayor?

7. La ventaja mecánica hace referencia a que lo que se gana en fuerza se pierde en recorrido. ¿Cómo se relaciona este principio con el funcionamiento de una gata como la de la figura?

